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Abstract
A recurrence equation is a discrete integrable equation whose solutions are
all periodic and the period is fixed. We show that infinitely many recurrence
equations can be derived from the information about invariant varieties of
periodic points of higher dimensional integrable maps.

PACS numbers: 02.30.Ik, 05.45.−a, 45.05.+x

1. Introduction

A recurrence equation is a discrete integrable equation whose solutions are all periodic and
the period is fixed. Some of them had been known for some years, while others have been
found recently. In this contribution we would like to show that infinitely many recurrence
equations can be derived from the information about invariant varieties of periodic points of
the higher dimensional integrable maps. Especially the recurrence equations associated with
the Quispel, Roberts and Thompson (QRT) map [1] are shown to exist one for each period.

Some examples of the recurrence equations are [2]

xn+1 = a

xn

, a: constant (1)

xn+1 = 1 + xn

xn−1
, (2)

xn+1 = 1 + xn + xn−1

xn−2
. (3)

An interesting feature of these equations is that, for an arbitrary initial value, the solution is
always periodic with a fixed period. The period is 2 in the case of (1), 5 in the case of (2) and 8
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in the case of (3). These equations were named the recurrence equations by the authors of
[3, 4] who have found many other examples of this type recently.

Apparently the recurrence equations are integrable. However there has not been known,
to our knowledge, any method to find them systematically. The purpose of this paper is to
develop a method to derive the recurrence equations from integrable maps in a systematic way.

Our key observation is that, writing (xn, xn−1, xn−2) as (x, y, z), the recurrence
equations (1)–(3) are equivalent to the higher dimensional maps

x → X = a

x
(4)

(x, y) → (X, Y ) =
(

1 + x

y
, x

)
(5)

(x, y, z) → (X, Y,Z) =
(

1 + x + y

z
, x, y

)
, (6)

respectively. There are a pair of fixed points at x = ±√
a, x = y = (1 ± √

5)/2 and
x = y = z = 1 ± √

2 for each map (4)–(6). Otherwise an arbitrary point on the complex
space can be an initial point of the periodic map of the corresponding period.

We have shown, in our recent paper [5, 6], that periodic points of higher dimensional
integrable maps with some invariants form an invariant variety for each period. The invariant
variety of periodic points is determined by imposing certain relations among the invariants.
Every point on an invariant variety can be an initial point of the periodic map of the same period.
All images of the map stay on this invariant variety. Therefore the map defines a recurrence
equation of the fixed period if it is constrained on the invariant variety. In some cases the
invariant varieties can be derived iteratively for all periods. We can associate one recurrence
equation with every invariant variety, thus obtain infinitely many recurrence equations.

We explain briefly the notion of invariant varieties of periodic points in section 2. Many
recurrence equations associated with the invariant varieties will be derived in section 3. We
discuss, in section 4, a method which enables us to derive the series of recurrence equations.

2. Invariant varieties of periodic points

Let us consider an iteration of a rational map on Ĉ
d
, where Ĉ = {C,∞},

x = (x1, x2, . . . , xd) → X = (X1, X2, . . . , Xd) =: X(1), (7)

and assume that H1(x),H2(x), . . . , Hp(x) are the p invariants. We are interested in the
behaviour of periodic points satisfying the conditions

X(n) = x, n = 2, 3, . . . . (8)

If h1, h2, . . . , hp are the values of the invariants determined by the initial point, then map
(7) is constrained on the (d − p)-dimensional algebraic variety V (h),

V (h) = {x|Hi(x) = hi, i = 1, 2, . . . , p}, (9)

and the periodicity conditions (8) are reduced to the constraints on some d −p functions �(n)
α ,

�(n)
α (h1, h2, . . . , hp, ξ1, ξ2, . . . , ξd−p) = 0, α = 1, 2, . . . , d − p, n � 2. (10)

Here by ξ1, ξ2, . . . , ξd−p we denote the variables which parameterize the variety V (h) after
the elimination of the p components of x. Note that the fixed-point conditions (n = 1) are
excluded in (10) since they have nothing to do with the invariants.
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For an arbitrary set of values of h1, h2, . . . , hp, the functions �(α)
n (h, ξ) define an affine

variety, which we denote by V (n)(〈�〉), i.e.,

V (n)(〈�〉) = {
ξ
∣∣�(n)

α (h, ξ) = 0, α = 1, 2, . . . , d − p
}
, n � 2.

In general this variety consists of a finite number of isolated points on V (h), hence zero
dimension, corresponding to the solutions to the d − p algebraic equation (10) for the
d − p variables ξ1, ξ2, . . . , ξd−p. In this case we say that the periodicity conditions (8)
are ‘uncorrelated’. If the values of the invariants are changed continuously these points move
all together and form a subvariety of dimension p in Ĉd . Needless to say, this case includes a
map with no invariant.

There are possibilities that equations (10) impose relations on h1, h2, . . . , hp instead of
fixing all ξα’s. Let l be the number of such equations. We write them as

γ (n)
α (h1, h2, . . . , hp) = 0, α = 1, 2, . . . , l, (11)

instead of �(n)
α , to emphasize independence from ξj ’s. If m is the number of the rest of the

equations

�(n)
α (h1, h2, . . . , hp, ξ1, ξ2, . . . , ξd−p) = 0, α = 1, 2, . . . , m (12)

d − p − m variables are not determined from the periodicity conditions. This means that
V (n)(〈�〉) forms a subvariety of dimension d − p − m of V (h). We say that the periodicity
conditions are ‘correlated’ in this case. In [5] we have proved the following lemma:

Lemma [5]. A set of correlated periodicity conditions satisfying min{p, d − p} � l + m

and a set of uncorrelated periodicity conditions of a different period do not exist in one map
simultaneously.

When m = 0, in particular, the periodicity conditions determine none of the variables
ξ1, ξ2, . . . , ξd−p but impose l relations among the invariants. Then the affine variety V (n)(〈�〉)
coincides with V (h). In other words every point on V (h) is a periodic point of period n, while
V (h) itself is constrained by the relations among the invariants. We say that the periodicity
conditions are ‘fully correlated’ in this particular case. If we replace hi by Hi(x) in γ (n)

α (h)

the periodicity conditions (11) enable us to consider the constraints on the invariants as the
constraints on the variables x. We denote by v(n)(〈γ 〉) the affine variety generated by the
functions γ (n)

α (H1(x),H2(x), . . . , Hp(x)), and distinguish it from V (n)(〈�〉). Namely we
define

v(n)(〈γ 〉) = {
x
∣∣γ (n)

α (H1(x),H2(x), . . . , Hp(x)) = 0, α = 1, 2, . . . , l
}
. (13)

We call v(n)(〈γ 〉) ‘an invariant variety of periodic points’, whose properties can be
summarized as follows:

• The dimension of v(n)(〈γ 〉) is d − l (� p).
• Every point on v(n)(〈γ 〉) can be an initial point of the periodic map of period n.
• All images of the periodic map starting from a point of v(n)(〈γ 〉) stay on it.
• v(n)(〈γ 〉) is determined by the invariants of the map alone.

If the periodicity conditions of period n are fully correlated, i.e., when m = 0 in (11), the
condition min{p, d −p} � l +m is always satisfied as long as (11) has solutions. Our theorem
thus follows from the lemma and this fact immediately.

Theorem [5]. If there are an invariant variety of periodic points of some period, there is no
set of isolated periodic points of other period in the map.
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This theorem tells us nothing about the integrability of a map. To proceed further we
assume that a nonintegrable map has at least one set of uncorrelated periodicity conditions.
This is certainly true if the map has a Julia set. Once we adopt this observation as a working
hypothesis, our theorem is equivalent to the following statement:

If a map has an invariant variety of periodic points of some period, it is integrable.

In order to support this proposition, we have investigated various known integrable maps
and found invariant varieties of periodic points in all cases if there are invariants.

3. Derivation of recurrence equations

If there are an invariant variety of periodic points of period n, every point on the variety can
be an initial point of an n periodic map. All images of the map are on the variety before the
map returns to the initial point. Therefore this variety is clearly distinguished from the rest of
Ĉd and is reserved only for the maps of period n. In other words, if the initial point is on this
variety the map is always n period.

This fact enables us to derive a recurrence equation once an invariant variety of periodic
points are known. Let

xj → Xj = fj (x1, x2, . . . , xd), j = 1, 2, . . . , d (14)

be the map and (13) be the invariant variety of period n of this map. We solve

γ (n)
α (H1(x),H2(x), . . . , Hp(x)) = 0, α = 1, 2, . . . , l (15)

for l variables, say xd−l+1, . . . , xd , and substitute them into fj , j = 1, 2, . . . , d − l of (14).
Then every initial point of the map Xj = fj , j = 1, 2, . . . , d − l, is constrained on v(n)(〈γ 〉),
thus we obtain a recurrence equation of period n.

The simplest method to achieve this program is to find the lth elimination ideal of the
functions {Xj − fj , j = 1, 2, . . . , d − l} and

{
γ (n)

α , α = 1, 2, . . . , l
}
. If the ideal is generated

by the functions F
(n)
j ’s satisfying

F
(n)
j (X1, X2, . . . , Xd−l , x1, x2, . . . , xd−l ) = 0, j = 1, 2, . . . , d − l, (16)

the recurrence equations are obtained by solving (16) for X1, X2, . . . , Xd−l .
For an illustration let us consider the map

(x, y) → (X, Y ) =
(

xy,
y(1 + x)

1 + xy

)
. (17)

This map has one invariant H(x, y) = y(1 + x) and the invariant variety of period 3 is given
by the zeros of

γ (3)(x, y) = H 2 + H + 1

= x2y2 + 2xy2 + y2 + xy + y + 1. (18)

The first elimination ideal of the functions X − xy and (18) is generated by the function

F (3)(X, x) = (x + 1)2X2 + x(x + 1)X + x2,

from which we obtain two maps:

x → X =




ω
x

x + 1
,

(ω3 = 1).

ω2 x

x + 1

(19)
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The iteration of the first map yields

x → ω
x

x + 1
→ ω2x

−ω2x + 1
→ x,

while the second map yields

x → ω2 x

x + 1
→ ωx

−ωx + 1
→ x.

In the rest of this section we would like to present the various types of recurrence equations
associated with invariant varieties of some integrable maps.

The d-dimensional Lotka–Volterra map is obtained by solving [7]

Xj(1 − Xj−1) = xj (1 − xj+1), j = 1, 2, . . . , d (20)

for X = (X1, X2, . . . , Xd) under the conditions xj+d = xj (j = 1, 2, . . . , d). The invariants
of this map are given by [5]


Hk = ∑′

j1,j2,...,jk
xj1xj2 · · · xjk

(1 − xj1−1)(1 − xj2−1) · · · (1 − xjk−1)

(k = 1, 2, . . . , [d/2])

r = x1x2 · · · xd

(21)

Here, the prime in the summation
∑′ of (21) means that the summation must be taken over all

possible combinations j1, j2, . . . , jk but excluding direct neighbours. The total number of the
invariants is p = [d/2] + 1, where [d/2] = d/2 if d is even and [d/2] = (d − 1)/2 if d is odd.

The invariant varieties have been derived in the cases of d = 3, 4 and 5 for some periods,
explicitly [5]. In all examples the dimension of the invariant varieties is p. Hence the dimension
of the recurrence equations is also p.

The three-dimensional Lotka–Volterra map is given by, writing (x1, x2, x3) = (x, y, z),

X = x
1 − y + yz

1 − z + zx
, Y = y

1 − z + zx

1 − x + xy
, Z = z

1 − x + xy

1 − y + yz
, (22)

after solving (20) for X, Y,Z. There are two invariants

r = xyz, s = (1 − x)(1 − y)(1 − z). (23)

The invariant varieties of periodic points have dimension 2 and are generated by the functions:

γ (2) = s + 1

γ (3) = r2 + s2 − rs + r + s + 1

γ (4) = r3s + s3 − 3rs2 + 6r2s + 3rs − r3 + s

γ (5) = r3s4 − r3s2 − 6r4s5 + 10r3s6 + 3s5r + s6 + s5 + 3r4s4 − 3r5s3

− 6r4s3 − r6s3 + 3r5s4 + s4 + 21s4r2 + 6s4r + r3s7 + s7

+ 27s5r2 − 3s6r − r3s5 + 21r2s6 − 10r3s3 − 6rs7 + s8

... (24)

for the periods 2, 3, 4, 5, . . . , respectively.
From these data we can derive a set of recurrence equations for each period. For the

period 2 case we find

F
(2)
1 = (x − 1)X − x, F

(2)
2 = (y − 1)Y − y,

and the map is simply given as

(x, y) →
(

x

x − 1
,

y

y − 1

)
→ (x, y). (25)
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In the period 3 case we obtain

F
(3)
1 = (x2 − x + 1)X2 + x(xy − 2x + y + 1)X + x2(y2 − y + 1)

F
(3)
2 = ((3x2 − 3x + 1)y2 − (3x2 − 5x + 2)y + (x − 1)2)Y 2

− y((3x2 − 2x + 1)y − (2x − 1)(x − 1))Y + y2(x2 − x + 1).

Since the solutions of
{
F

(3)
1 = 0, F

(3)
2 = 0

}
are twofolds the map has two routes:

(x, y) →
(

ω
x(y + ω2)

x + ω2
,

(1 − ω2)y(x + ω2)

3xy + (x + y − 1)ω2

)

→
(

(1 − ω2)x(y + ω2)

3xy + (x + y − 1)ω2
, ω

y(x + ω2)

y + ω2

)
→ (x, y)

(x, y) →
(

ω2 x(y + ω)

x + ω
,

(1 − ω)y(x + ω)

3xy + (x + y − 1)ω

)

→
(

(1 − ω)x(y + ω)

3xy + (x + y − 1)ω
, ω2 y(x + ω)

y + ω

)
→ (x, y),

where ω3 = 1. Similarly we can derive recurrence equations for larger periods, but their
complicated expressions are not worth to be presented here for our purpose of this paper.

The 4d Lotka–Volterra map (x, y, z, u) → (X, Y,Z,U) has three invariants. The
invariant variety is generated by the function

γ (2) = H1 − 2 = x + y + z + u − xy − yz − zu − ux − 2

in the period 2 case, from which we derive the recurrence equation:

F
(2)
1 = (1 − x − z)X + x,

F
(2)
2 = Y − y(1 − x − z),

F
(2)
3 = (1 − x − z)Z + z.

This provides an example of a three-dimensional map of period 2,

(x, y, z) →
(

x

x + z − 1
, y(1 − x − z),

z

x + z − 1

)
→ (x, y, z). (26)

The N-point Toda map is known equivalent to the (d = 2N)-dimensional Lotka–Volterra
map [7]. In the case N = 3, the map (x, y, z, u, v,w) → (X, Y,Z,U, V,W) is defined by

X = y
zu + zx + wu

yw + yz + vw
, Y = z

xv + xy + uv

zu + zx + wu
, Z = x

yw + yz + vw

xv + xy + uv
,

U = u
yw + yz + vw

zu + zx + wu
, V = v

zu + zx + wu

xv + xy + uv
, W = w

xv + xy + uv

yw + yz + vw
.

Since this map has four invariants,

t1 = x + y + z + u + v + w,

t2 = xy + yz + zx + uv + vw + wu + xv + yw + zu,

t3 = xyz,

t ′3 = uvw,

the recurrence equations are expected to be four dimensional. The invariant variety of period
3 is given by the intersection of the equations [5]

γ
(3)
1 = t1 = 0, γ

(3)
2 = t2 = 0.
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From these data we derive a four-dimensional recurrence equation:

F
(3)
1 = (x + y + u)X + (u + v + y)y,

F
(3)
2 = (u + v + y)Y − (u + v + y)2 − (x − v)u,

F
(3)
3 = (u + v + y)U + (x + y + u)u,

F
(3)
4 = (v − x)V + (u + v + y)v,

or writing the solution explicitly, we find the map




x

y

z

u


 →




−y
u + v + y

x + y + u

φ(x, y, u, v)

−u
x + y + u

u + v + y

v
u + v + y

x − v




→




φ(x, y, u, v)
x + y + u

x − v

x
u + v + y

x − v

u
x − v

u + v + y

−v
x + y + u

x − v




→




x

y

z

u


 ,

where

φ(x, y, u, v) = (u + v + y)2 + (x − v)u

u + v + y
.

For the last example we consider the Euler top. Let (x, y, z) be the three components of
the angular velocity of the Euler top. Then the map (x, y, z) → (X, Y,Z) satisfying

X = α(Yz + Zy), Y = β(Zx + Xz), Z = γ (Xy + Yx) (27)

defines a discrete analogue of the Euler top [8], if the parameters (α, β, γ ) are related to the
three moments of inertia I, J,K of the top by

α = J − K

2I
, β = K − I

2J
, γ = I − J

2K
.

This map has two invariants [4, 8, 9]

H1 = Ix2 + Jy2 + Kz2

1 − βγ x2
, H2 = I 2x2 + J 2y2 + K2z2

1 − βγ x2
,

from which we have found an invariant variety of periodic points [6]

v(3) =
{

x

∣∣∣∣∣3 + γ
KH1 − H2

IJ
− β

JH1 − H2

KI
−

(
α

IH1 − H2

2JK

)2

= 0

}
,

which are generated by the function

γ (3) = (1 + βγ x2 + γαy2 + αβz2)2 − 4αβγ (αy2z2 + βz2x2 + γ x2y2) − 4

in the period 3 case. The recurrence equation of period 3 is then obtained as follows:

F
(3)
1 = β((1 − αγy2)(αγy2 + βγ x2 − 2 − 2q)X − (1 − αγy2 + q)x)2

− αy2(1 − αγy2 + q)2(αγy2 + βγ x2 − 1 − 2q)

F
(3)
2 = α((1 − βγ x2)(αγy2 + βγ x2 − 2 − 2q)Y − (1 − βγ x2 + q)y)2

− βx2(1 − βγ x2 + q)2(αγy2 + βγ x2 − 1 − 2q),

where q =
√

(1 − αγy2)(1 − βγ x2). The map has two routes,

(x, y) →
{

(X+, Y+) → (X−, Y−)

(X−, Y−) → (X+, Y+)

}
→ (x, y), (28)
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corresponding to the zeros of
{
F

(3)
1 , F

(3)
2

}
:

X± = 1 − αγy2 + q

1 − αγy2

x ± y
√

αβ(αγy2 + βγ x2 − 1 − 2q)

αγy2 + βγ x2 − 2 − 2q
,

Y± = 1 − βγ x2 + q

1 − βγ x2

y ± x
√

αβ(αγy2 + βγ x2 − 1 − 2q)

αγy2 + βγ x2 − 2 − 2q
.

The two routes correspond to the forward and the backward maps starting from the same initial
point. This means that the discrete Euler top cannot start its three-period motion unless the
direction of the motion is informed.

Some remarks are in order:

• Although most of the reduced maps discussed in this section happen to be rational, the
solutions of (16) are not rational in general, even if the higher dimensional maps are
rational. Indeed the recurrence map (28) of the discrete Euler top is not rational. We shall
discuss other non-rational cases in section 4.2.

• Since an iteration of a rational map is again rational, all periodic points are rational
functions of the initial point if the reduced map is rational.

• It is important to note that, among rational recurrence maps, linear maps x → X = Ax
play a special role, where A is a d × d constant matrix satisfying An = I . The
periodicity is rather trivial in this case. A linear map is equivalent to a set of Möbius
maps by a conjugation. In fact, map (19) is a single Möbius map and (25) is a pair
of two Möbius maps, which are linearizable. If we define (x1, x2, x3, x4) such that
x = x1/x4, y = x4/x2, z = x3/x4, the 4d LV map (26) is also equivalent to the linear
map 


x1

x2

x3

x4


 →




1 0 0 0
0 −1 0 0
0 0 1 0
1 0 −1 1







x1

x2

x3

x4


 . (29)

In [6] we have shown that the discrete Euler top becomes a linear map in the axially
symmetric limit.

• The general solutions of the recurrence equations are difficult to express as functions of
the number of the iteration. When the map is linearlizable, however, they are given by
trigonometric functions. For example X(n) = axcos πn, in the case of (4), and

X
(n)
± = e± i2πn/3x

e± i2πn/3−1
e± i2π/3−1 x + 1

,

in the case of (19), corresponding to the first and the second maps.
• Once a map is linearlized the reduced system plays the role of a discrete analogue of the

action–angle representation in the continuous time Hamilton systems. From this point of
view it will be useful if there is a way to discriminate linearlizable maps from the rest.

4. Series of recurrence equations

Let f1(x), f2(x), . . . , fd−p(x),H1(x), . . . , Hp(x) be some functions of x = (x1, x2, . . . , xd).
If gj (x), j = d − p + 1, . . . , d are the solutions of

Hi(f1, f2, . . . , fd−p, gd−p+1, . . . , gd) = Hi(x1, x2, . . . , xd), i = 1, 2, . . . , p,
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they define a map

x → X = (f1(x), f2(x), . . . , fd−p(x), gd−p+1(x), . . . , gd(x)), (30)

in which H1(x),H1(x), . . . , Hp(x) are invariant.
Conversely, by using the invariants we can reduce map (30) to a (d − p)-dimensional

one, in which the invariants become constant parameters. This fact enables us to consider the
various higher dimensional maps all together, just by studying a simple low-dimensional one.
Somewhat similar approaches have been developed recently in the literature [12].

4.1. Möbius map series

Following the above prescription we can derive the higher dimensional integrable maps which
reduce to the Möbius map, if a, b, h are some functions of the invariants H1,H2, . . . , Hd−1

and we define f1 by

f1(x) = h
x1 + a

1 + bx1
. (31)

The iteration of this map does not change the form of the map, but only changes the functions
a, b, h. Since we have assumed that these functions are dependent on the invariants Hi(x)

alone, the initial values (a, b, h) remain constant through the iteration. If we write

X(n) = h(n) x + a(n)

1 + b(n)x
(32)

after n steps, the (n + 1)th parameters are related to the nth ones by

a(n+1) = a + a(n)h(n)

h(n) + ab(n)
, b(n+1) = b(n) + bh(n)

1 + bh(n)a(n)
, h(n+1) = h

h(n) + ab(n)

1 + bh(n)a(n)
,

from which we can determine all parameters iteratively as functions of the initial values
(a, b, h).

The periodicity conditions of period n for map (31) are now satisfied if the parameters
(a, b, h) satisfy

(a(n+1), b(n+1), h(n+1)) = (a, b, h). (33)

From the construction it is clear that the periodicity conditions do not fix the values of the
variable x but impose some constraints on the parameters, hence on the invariants.

Solving (33) iteratively we find the invariant varieties of periodic points [5]

v(2) = {x|1 + h = 0}
v(3) = {x|1 + h + h2 + abh = 0}
v(4) = {x|1 + h2 + 2abh = 0}
v(5) = {x|1 + h + h2 + h3 + h4 + abh(3 + (4 + ab)h + 3h2) = 0}
v(6) = {x|1 − h + h2 + 3abh = 0}

....

(34)

According to our argument in section 3 we should have the recurrence equations
corresponding to the invariant varieties (34), one for each period. To obtain the recurrence
equations we must specify the invariants of the map in higher dimensions. Although the
dimension of the map could be chosen arbitrary, we consider here two dimensions for the sake
of simplicity. The number of the invariants is 1 in this case. Let H(x, y) be the invariant. A
two-dimensional map, which reduces to (31), will be obtained if we fix f1(x, y) and H(x, y)
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as functions of (x, y). For this purpose we further assume simply that a, b are constants and
the function f1 and the invariant H are given by

f1(x, y) = H(x, y)
x + a

1 + bx
, H(x, y) = y(1 + bx).

Solving H(f1, g) = H(x, y) for g(x, y) we find a map

(x, y) → (X, Y ) =
(

(x + a)y, y
1 + bx

1 + by(x + a)

)
. (35)

This includes (17) as a special case.
Since already we have information (34) of the invariant varieties it is not difficult to derive

a series of recurrence equations associated with the two-dimensional map (35), one for each
period, as follows:

F (2) = (1 + bx)X + x + a,

F (3) = (1 + bx)2X2 + (1 + ab)(1 + bx)(x + a)X + (x + a)2,

F (4) = (1 + bx)2X2 + 2ab(1 + bx)(x + a)X + (x + a)2,

F (5) = (1 + bx)4X4 + (1 + 3ab)(1 + bx)3(x + a)X3

+ (1 + 4ab + a2b2)(1 + bx)2(x + a)2X2

+ (1 + 3ab)(1 + bx)(x + a)3X + (x + a)4,

F (6) = (1 + bx)2X2 − (1 − 3ab)(1 + bx)(x + a)X + (x + a)2,

....

To convince ourselves let us see some of the maps explicitly. The map of period 2 is
generated by F (2), from which we find

x → − x + a

1 + bx
→ x.

We note that the generating functions of period 3, 4 and 6 cases are similar. There is a pair of
routes for each period. The map in the period 3 case, for example, is given by

x →




−µ+
x + a

1 + bx
→ −x + aµ−

µ− + bx

−µ−
x + a

1 + bx
→ −x + aµ+

µ+ + bx




→ x,

where µ± = 1
2

(
1 + ab ± √

(3 + ab)(ab − 1)
)
.

4.2. Biquadratic map

By studying various higher dimensional integrable maps which reduce to a one-dimensional
map x → X, we found, in [5], that many of them reduce not to the Möbius map but to the
‘biquadratic map’ x → X defined by the equation

aX2x2 + b(X + x)Xx + c(X − x)2 + dXx + e(X + x) + f = 0. (36)

Here,

q = (a, b, c, d, e, f ) ∈ C6 (37)

are functions of d − 1 invariants. The function f1(x) is determined by solving (36) for X.
Because of the symmetry of equation (36) under the exchange of X and x, the iteration of

the map leaves the form of the map and changes only the parameters q, as was shown in [5].
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After repeating the iteration n times, the (n+ 1)th parameters q(n+1) are determined by q(n) and
the initial values q. Since the parameters are functions of the invariants alone, the periodicity
conditions q(n+1) = q impose some constraints among the invariants different for each period.

Solving the periodicity conditions iteratively we have found [5] a series of invariant
varieties of periodic points, one for each period. If v(n) = {x|γ (n) = 0} is the invariant variety
of period n, the generating functions γ (n) are given by

γ (3)(q) = af − be − 3c2 + cd,

γ (4)(q) = 2acf − adf + b2f + ae2 − 2c3 + c2d − 2bce,

γ (5)(q) = a3f 3 + (−cf 2d + 2cf e2 + f de2 − 3ebf 2 − e4 − c2f 2)a2

+ (−13c4f + 18c3f d + de3b + 2cf 2b2 + 7dc2e2 − ce2d2 − 2ce3b

+ 2c2f eb − 7f d2c2 − 14c3e2 + cd3f + f b2e2 + f 2db2 − ebd2f )a

− cd2b2f − b3e3 − 4c3deb + cdb2e2 + 13ec4b − f 2b4 + 7f b2c2d

+ c4d2 − 5c5d + 5c6 − 2f b3ec − e2c2b2 + eb3df − 14f b2c3 (38)

and so on.
In order to derive the recurrence equations, we must specify the higher dimensional maps.

As we have shown in [5, 6] the symmetric version of the QRT map [1], the 3d Lotka–Volterra
map of (22), the discrete Euler top, a special case of the q-Painlevé IV map belong to this
category. For example the 3d LV map (22) is equivalent to the biquadratic map if we choose

a = r + 1, b = s − 2r − 1, c = r − s,

d = s2 + rs + 5r − 2s + 1, e = −r(s + 1), f = 0,

from which we could derive the invariant varieties (24).

4.3. The recurrence equations derived from the QRT map

In the rest of this section we want to derive the recurrence equations generated from the QRT
map. The symmetric version of the famous QRT map [1] is given by

(x, y) → (X, Y ) =
(

y,
η′(y)ρ ′′(y) − ρ ′(y)η′′(y) − x(ρ ′(y)ξ ′′(y) − ξ ′(y)ρ ′′(y))

ρ ′(y)ξ ′′(y) − ξ ′(y)ρ ′′(y) − x(ξ ′(y)η′′(y) − η′(y)ξ ′′(y))

)
. (39)

Here

ξ ′(x) := a′x2 + b′x + c′, ξ ′′(x) := a′′x2 + b′′x + c′′,

η′(x) := b′x2 + (d ′ − 2c′)x + e′, η′′(x) := b′′x2 + (d ′′ − 2c′′)x + e′′,

ρ ′(x) := c′x2 + e′x + f ′, ρ ′′(x) := c′′x2 + e′′x + f ′′,

and q′ = (a′, b′, c′, d ′, e′, f ′) and q′′ = (a′′, b′′, c′′, d ′′, e′′, f ′′) are constants.
Map (39) has an invariant [1]

H(x, y) = − ξ ′(x)y2 + η′(x)y + ρ ′(x)

ξ ′′(x)y2 + η′′(x)y + ρ ′′(x)
, (40)

hence it can be reduced to a one-dimensional map x → X. The calculation of the second
elimination ideal is rather trivial in this case. If y and Y are eliminated by using the invariant
H(x, y) = h, the result we obtain is

ξ(x)X2 + η(x)X + ρ(x) = 0 (41)

where

ξ(x) := ax2 + bx + c, η(x) := bx2 + (d − 2c)x + e, ρ(x) := cx2 + ex + f,
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with q = q′ + hq′′. If we identify q = (a, b, c, d, e, f ) with those of (37), map (41) is exactly
the biquadratic map (36).

In the theory of the QRT map formula (41) is called an invariant curve [1]. The problem
of solving equation (39) is now converted to finding the coefficients of (41) iteratively. Our
general formula (38) provides explicit expressions of the invariant varieties of the symmetric
QRT map (39). Namely, by simply replacing q by q′ +H(x, y)q′′ in (38), the invariant varieties
are

v(n) = {x, y|γ (n)(q′ + H(x, y)q′′) = 0}, n = 3, 4, 5, . . . . (42)

In order to derive the recurrence equations we must eliminate y from the equation, so that
map (39) is constrained on the variety (42). It amounts to replacing y by X in H(x, y), since
X = y. Thus we have found that the recurrence equations associated with the QRT map are
generated by the functions

F (n) = γ (n)(q′ + H(x,X)q′′), n = 3, 4, 5, . . . . (43)

From (38) the recurrence equation of period 3 is, for example,

F (3) = (a′ + H(x,X)a′′)(f ′ + H(x,X)f ′′) − (b′ + H(x,X)b′′)(e′ + H(x,X)e′′)
− 3(c′ + H(x,X)c′′)2 + (c′ + H(x,X)c′′)(d ′ + H(x,X)d ′′) = 0.

Note that the induced map x → X is not rational but biquadratic.
Before closing this section we would like to make a comment about the relation of our

study to the geometric approach to the QRT maps [10, 11]. In the latter approach it was shown
that the QRT map has periodic orbits for any initial point only when the period is 2, 3, 4, 5 or
6. Some examples are also given in [3, 4]. For example the map

(x, y) →
(

y, y
α(x + y) − βxy

α(x − y) + (β − γ x)y2

)
produces an orbit of period 4 for any initial point (x, y). This can be obtained from (39) if we
set

d ′ − 2c′ = e′ = f ′ = d ′′ − 2c′′ = e′′ = f ′′ = 0 (44)

and α = b′c′′ − c′b′′, β = c′a′′ − a′c′′, γ = a′b′′ − b′a′′. In other words, if we choose the
parameters properly the two-dimensional QRT map (39) becomes periodic for arbitrary initial
points, hence for all values of the invariant H(x, y). They are two-dimensional recurrence
equations.

On the other hand, we have shown that the QRT map has an invariant variety (42) for
each period. The formula γ (n)(q′ + H(x, y)q′′) = 0 relates the invariant H(x, y) to the
parameters (q′, q′′). Therefore, for a given set of the parameters, the value of y of the initial
point (x, y) is not free but is determined dependent on x, in general. The two-dimensional
recurrence equations, in which both x and y are free, are possible only for some particular
set of parameters such that the value of the invariant H(x, y) is irrelevant to determine the
varieties (42). Indeed, if we set the parameters as (44), the equation γ (4)(q′ + H(x, y)q′′) = 0
is satisfied irrespective of H(x, y). The geometric approach tells us that this is possible when
the period is 2, 3, 4, 5 and 6. In generic case a reduced one-dimensional map x → X is
induced on the variety (42) as we replace y by X. The recurrence equation (43) associated with
the QRT map holds in this way for all QRT parameters and for all periods.
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